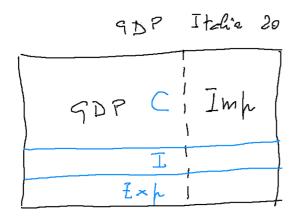
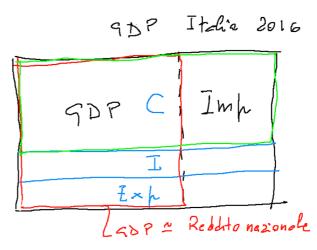
Notes and links

January 12th

What means economy/economics and what these words mean for you.
Home-work (please send your homework to pietro.terna@unito.it)
_
A close look to the program: http://fisica-sc.campusnet.unito.it/do/corsi.pl/Show?_id=gwpc;sort=DEFAULT;search=;hits=59#a_programma_gwpc
My book.
Epstein, J.M. (2014), Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science: see the Cmap/Readings
_
The importance of our Cmap
_
Leibniz's dream
Leibniz (xi. De scientia universali seu calculo philosophico): quando orientur controversiae, non magis disputatione opus erit inter duos philosophos, quam inter duos computistas. Sufficiet enim calamos in manus sumere sedereque ad abbacos et sibi mutuo () dicere, calculemus.
Calculemus = Simulemus
Artifacts in social science
_
A short paper on models, Simon and complexity, by Pietro Terna.
From the Cmap look at
Terna p. 4, three types of models
Axtell and Epstein p. 6, the Axtell and Epstein's definition of ABMs

Agent-based models and programming.


_

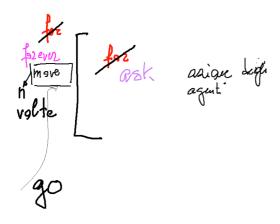

January 17th, 18th, and 19th

Cmap novelties

_

A rectangular pie.

1.1.2016 -- 31,12.2016


Ancora contabilità nazionale

$$\begin{array}{lll}
\text{GDP} + \text{Im} \mu &= C + I + \text{Exp} \\
\text{GDP} - C &= J + (\text{Exp} - \text{Im} \mu) \\
\text{Rispanio} \\
\text{ITA} &> 0 &> 0 &> 0 \\
\text{CIHAS} &> 0 &> 0 &> 0
\end{array}$$

National accounting, look at the online primer (from the program, at https://www.bea.gov/national/pdf/nipa_primer.pdf, figure at p.3 and table at p. 4)

http://hdr.undp.org/en/content/human-development-index-hdi

A first look to NetLogo

The Go button 'forever' (using also reset-ticks, risk and ticks)

Using NetLogo Starter

The content of the NetLogo box in the Cmap

_

Using the box Programming examples of the Cmap

_

A first look to Python (3)

The content of the **Python box in the Cmap**

_

familiarize with Python live in the IDLE shell or creating a .py file or via IPython and IPython notebook

January 24th, 25th, and 26th

Old and current Home-works

a common exercise form the bottom layer: turtles going around and changing their color il they found closely another turtle of a different color (both change to a third color):

20170124 prova ask.nlogo with 20170125 prova ask + grafici.nlogo

_

Using again NetLogo Starter

_

SLAPP https://github.com/terna/SLAPP (with Python) + Oligopoly model https://github.com/terna/oligopoly

Python / IPython with https://tmp59.tmpnb.org and https://juliabox.com

====

Python 3.6

from python.org download python-3.6.0 installer run it

libraries

sudo -H pip3 install numpy Successfully installed numpy-1.12.0

sudo -H pip3 install scipy Successfully installed scipy-0.18.1 (contains numpy and F2PY for Fortran)

sudo -H pip3 install matplotlib

Successfully installed cycler-0.10.0 matplotlib-2.0.0 pyparsing-2.1.10 python-dateutil-2.6.0 pytz-2016.10 six-1.10.0

sudo -H pip3 install networkx Successfully installed decorator-4.0.11 networkx-1.11

for SLAPP sudo -H pip3 install xlrd Successfully installed xlrd-1.0.0

====

The folder "1 plainProgrammingBug" in SLAPP (Python 2), in program box we have the Python 3 version

HOWTO add agents?

_

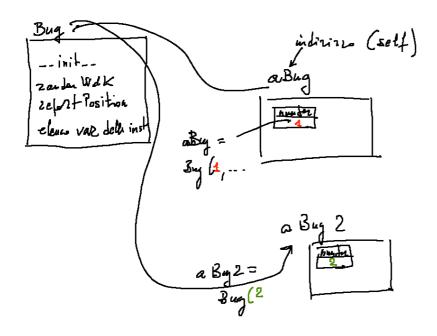
The program

"start 1 plainProgrammingBug.nlogo" in Cmap/Programming Examples

Look at the content of the boxes

Agent based models (ABMs) for simulation experiments

Programming / Python / IPython


_

"2 basicObjectProgrammingBug" in SLAPP using the P3 v. in Programming Esamples box

Adding collections

"3 basicObjectProgrammingManyBugs" in SLAPP (with a further step in "start 3 basicObjectProgrammingManyBugsAppend.py" reported in the Cmap) using always the box Programming examples

Class, instances, the *self* concept as a memory address; as a starting point have a look to the file class_instances_self.py, (in the Cmap)

Back to NetLogo, in a parallel way:

start 2 basicObjectProgrammingBug.nlogo start 3 basicObjectProgrammingManyBugs.nlogo

Economics

Quantity in a perfect competition market

January 31st, February 1st, and 2nd

Who did it?

_

February 16th, Thursday, no lesson

_

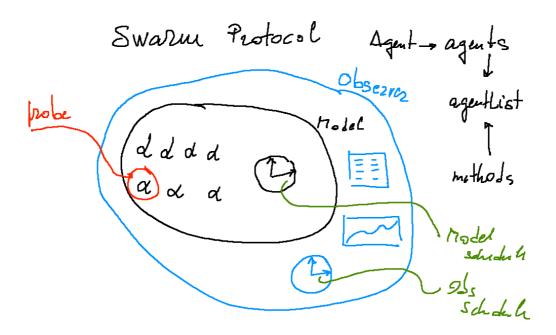
Old and current Home-works

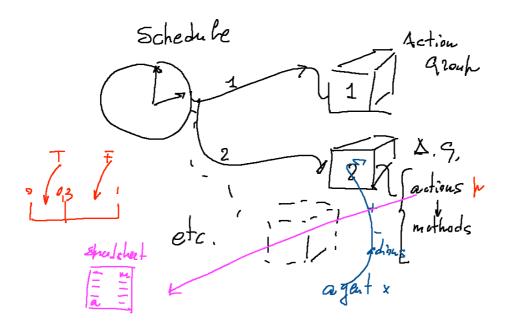
Novelties in the Cmap (Readings)

(Economy)

completed the picture above

http://www.telegraph.co.uk/news/uknews/theroyalfamily/3386353/The-Queen-asks-why-no-one-saw-the-credit-crunch-coming.html


Mario Draghi at Prometeia 40th year celebration (<u>http://www.prometeia.it/home</u>), Dec. 14th, 2015: https://www.youtube.com/watch?v=L0FFCRIskyQ


Daron Acemoglu and Pascual Restrepo. Secular stagnation? the effect of aging on economic growth in the age of automation. 2017.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2899142 Also in Camp readings

_

The Swarm protocol and the schedule representation

class Turtle and turtlesMovingTalking.py turtlesMovingTalking_DISPLAYING.py

Python/SLAPP folder 4: basicObjectProgrammingManyBugs_bugExternal_+_shuffle.py Bug.py

start 4 basicObjectProgrammingManyBugs_+_shuffle.nlogo start 4bis basicObjectProgrammingManyBugs_+_shuffle_+_ModAttributes.nlogo breeds.nlogo

Economics again

Basics of consumer choice

$$\mathcal{U}\left(x_{2},x_{2},-x_{n}\right) \frac{\partial u}{\partial x_{i}} > 0 \frac{\partial^{2} u}{\partial x_{i}^{2}} < 0$$

$$-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

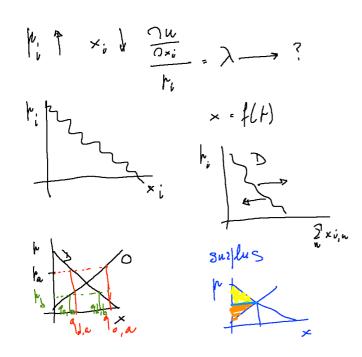
$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{1} + x_{2}h_{2} - R
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} = 0 \\
-R + x_{1}h_{n} + x_{2}h_{n} + x_{2}h_{n} = 0
\end{bmatrix}$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} + x_{2}h_{n} + x_{n}h_{n} = 0$$

$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} + x_{n}h_{n} + x_{n}h_{n} + x_{n}h_{n} = 0$$


$$\begin{bmatrix}
-R + x_{1}h_{1} + x_{2}h_{2} + ... + x_{n}h_{n} + x_{n}h_{n$$

February 7th, 8th, and 9th

Old and current Home-works

Economics

Price, quantity, global demand

(with Quantity in a perfect competition market, pp. 23-66 of Fenoaltea's book)

Python/SLAPP folder: 5 objectSwarmModelBugs

_

Exploring the stock market with

CDA_basic_model.nlogo

_

projects in SLAPP

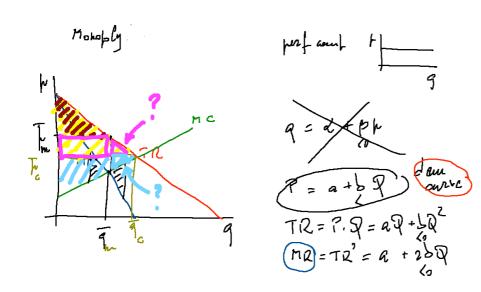
SLAPP in IPython and on line

(the importance of NumPy)

installing the stuff for SLAPP

February 14th, and 15th

_


novelties in the Cmap

Old and current Home-works

Trend agents in CDA

Economics

Monopoly

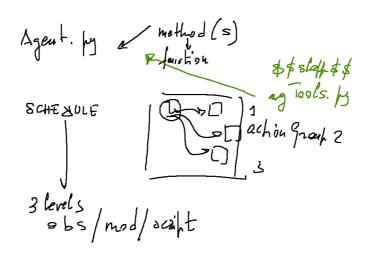
getting closer to

the running shell of SLAPP, folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX SLAPP

Agent definition

ag Type File. text containing the list of
the the types of agents

have I tak


1 the ids of the opent (and
their initial values)

observe dotions text actions of the Obs.

creations

actions

Tead _ smit _ 3 shedule .x ls -7 schedule .to

using iPython and Jupyter https://ipython.org
https://jupyter.org

pip wheel jupiter

(pip, pip2, pip3)

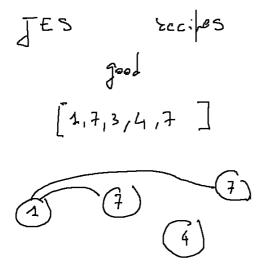
_

SLAPP again

The AESOP (Agents and Emergencies for Simulating Organizations in Python) implementation, has the capability of reading the schedule from a text file.

The test file is schedule.txt and its contents are read if we have "read_script" steps activated in the schedule of the model.

If the file is finished, further attempt to "read_schedule" have no effect.


We can read more than one command per step.

If we create a xls file, this is used instead of the txt one.

explore projects:

basic production

a short explanation about production (which is deeply explained in my 2015 book):

NB practice with terminal/power shell/command prompt

It is highly useful to familiarize with the Unix-like commands of the Linux/Mac OS Terminal and Windows PowerShell, e.g., at

https://en.m.wikipedia.org/w/index.php?title=Command-line_interface&redirect=no

and with the DOS-like commands of Command Prompt of Windows, e.g., at

http://pcsupport.about.com/od/termsc/p/command-prompt.htm

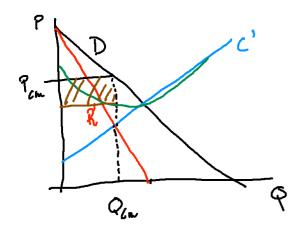
related to the production, a first step in Python with NetworkX http://networkx.github.io
aFirstStepWithNetworkX.py
aFirstStepWithNetworkX_&_agents.py

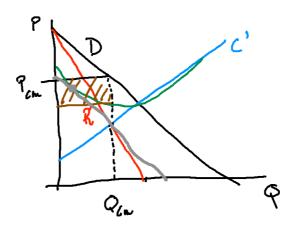
February 21st, 22nd and 23th

Jacopo Pellegrino in GAMA and Jade on Wednesday 22 nd
_
Old and current Home-works
_
Exam
_
_
launching jupyter notebook
_
Стар
Scratch, StarLogo TNG
_
NetworkX again with the betweenness example
betweennessWithNetworkX_&_agents.py betweennessWithNetworkX_&_agents_large.py
(later, with NetLogo and NW extension) —

R

special learning tool for R: swirl install.packages("swirl") library("swirl") swirl() a book about R Programming for Data Science examples in the Camp a_R_demand_offer.R a first look to ANNa (box Artificial Neural Networks, annBasics). b_nnet_xor.R c nnet 1 o.R d_nnet_2_o.R building a data set for an Artificial Neural Network, collecting data in class markets again: the a_R_demand_offer.R model (in R just to exercise) vs. the interactingBuyersAndSellers.nlogo model in NetLogo examples, with the interactingB&S_pictures.zip collection February 28th, March 1st, and 2nd Novelties in the Cmap Old and current Home-works


the ANN of the class


e_people_20170221.zip

(and the old RNA code).

Economics

Monopolistic competition

(with pp. 67–88 and 121-128 of Fenoaltea's book)

_

Network analysis

NetLogo and the NW extension.

Preliminary steps with the NW library following:

- a) ourFirst_NW_Example.nlogo
- b) the Usage section in https://github.com/NetLogo/NW-Extension with:
- nw:context (our file contexts.logo)
- Special agentsets vs. normal agentsets (look at ourFirst_NW_Example+SIZE.nlogo)
- c) from https://github.com/NetLogo/NW-Extension/tree/5.x/demo (within branch 5.x) look at the Network Extension General Demo with the info sheet and to its weblinks

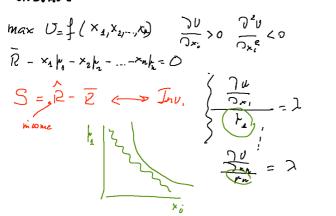
reported also in our repository

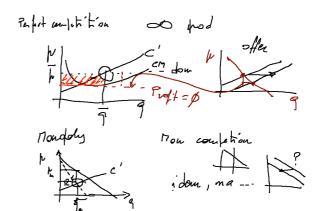
d) an emerging network: productionWorld.nlogo

Python and the NetworkX library

NetworkX use (as already seen):

Look at

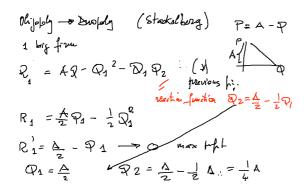

http://networkx.github.io/documentation/latest/index.html


https://networkx.github.io/documentation/networkx-1.10/reference/algorithms.html

Economics

Summarizing

CON.ZUMA >



Oligopoly

Object
$$g = 2 \operatorname{diopely}$$
 'Courant' P

Domain & course $P = A - P$
 $C_1 = C_2 = Q$
 $G = Q_1 + Q_2$
 $TR_1 = PQ_1 = A - (P_1 + Q_2) P_1 = AP_1 - Q_2^2 - P_1 Q_2$
 $Q_1 = A - 2Q_1 - Q_2^2 - P_2 Q_2$
 $Q_1 = A - 2Q_1 - Q_2^2 - Q_2^2 - Q_2^2$
 $Q_1 = A - Q_2^2 - Q_2^2 - Q_2^2$
 $Q_1 = A - Q_2^2 - Q_2^2 - Q_2^2$

Funtions

Oligopoly model with Marco Mazzoli and Matteo Morini
The slides are in Readings and Links:
http://terna.to.it/econophysics17/cmap/An%20oligopolistic%20model%20wirh%20SLAPP.pdf

March 7th and 8th

Novelties in the Cmap

Last Home-work

Pandas (have also a look to the other projects via Numfocus)

Quandl

about Quandl, look at myFirstQuandlExample.ipynb from the Camp (Python_examples)

connecting R to NetLogo using R extension (NetLogo 6 or more

Within R only once (and it is not necessary to keep R running) install.packages("rJava") install.packages("JavaGD") # Optional install.packages("CommonJavaJars") # Optional

in case of troubles look at the NetLogo User Manual (Extensions, R, Configuring the R extension)

```
Within NetLogo
extensions/r/models
example1.nlogo
install.packages("spatstat"), then
plot-example1.nlogo
plot-example2.nlogo
connecting R to Python
http://terna.to.it/econophysics17/cmap/pyRserve_Rserve.pdf
Within R
> install.packages("Rserve")
using Serve
>library(Rserve)
>Rserve()
                     >Rserve(args="--no-save") in Mac OSX
now you can quit R
>q()
In Python, interactively
import pyRserve
cn=pyRserve.connect(host="localhost")
cn.r('a=2')
cn.r.a
cn.r('v<-c(1,2,1,3,-1,22,-7)')
cn.r('x11()')
cn.r('plot(v)')
cn.r('dev.off()')
cn.close()
a complete example is timeSeriesNNs.zip
in our repository http://terna.to.it/econophysics16/Python_examples/
Production function and long run production
Decreasing returns?
```

Cobb Dougles
$$P_{t} = A L^{\alpha} K^{\beta}$$
 $\frac{P_{t}}{L_{t}} \frac{P_{t}}{K_{t}}$
 $\frac{P}{Cl} = \alpha A L^{\alpha 1} K^{\beta}$
 $\frac{P^{2}P}{Cl} = (k-1) \alpha L^{\alpha - 2} L^{\beta}$
 $\frac{P}{Cl} = A L^{\alpha} K^{\beta}$
 $\frac{P}{Cl} = A L^{\alpha} K$

(with pp. 90-106 of Fenoaltea's book)

Let us recapitulate from the beginning, about economics: the role of prices

In NetLogo box

__includes BehaviorSpace eXtraWidgets _

March 14th

_

Novelties in the Camp: NumPy Cheat Sheet in NumPy (SciPy) box Ipython Or Jupyter (?) in Ipython / Jupyter box

_

tutormagic extension for the Jupyter notebook (in Ipython / Jupyter box)

to consolidate Python knowledge

follow https://github.com/kikocorreoso/tutormagic and install the magic tutor with pip install tutormagic

use it as in tutormagicExample.ipynb in Python_examples from the Cmap

_

In Readings and Links,

Jan C. Thiele, Winfried Kurth, and Volker Grimm. Facilitating parameter estimation and sensitivity analysis of agent-based models: A cookbook using netlogo and 'r'. Journal of Artificial Societies and Social Simulation, 17(3):11, 2014. ISSN 1460-7425.

Links in Reading and Links to the Centre for Research in Social Simulation (Nigel Gilbert) and to the Agent-Based Computational Economics web site (Leigh Tesfatsion)

_

Genetic Algorithms and NetLogo

in the specific box we have the link to http://www.behaviorsearch.org/index.html where, under Download, we read: "ALERT: BehaviorSearch currently only works with Netlogo 5.2.x and earlier. We are working on a new version of BehaviorSearch that will work with Netlogo 5.3.x and above..."

but, within the NetLogo 6.0 folder, we have the "Behaviorsearch 6.0.app" for Mac (or proper executables for the other operating systems) and a folder of examples a folder of documentation (with a tutorial)

let's see the Example_Flocking_Convergence.bsearch example (via File / Open Example) we are using models/Sample Models/Biology/Flocking.nlogo

what if we want to evolve a specifica agent, not a model?
_
DSGE
https://en.wikipedia.org/wiki/Dynamic_stochastic_general_equilibrium browsing it
The virtues and vices of equilibrium and the future of financial economics COMPLEXITY Special Issue: Econophysics Volume 14, Issue 3, January/February 2009, Pages: 11–38, J. Doyne Farmer and John Geanakoplos http://onlinelibrary.wiley.com/doi/10.1002/cplx.20261/abstract
Also interesting the whole number of Complexity, on Econophysics http://onlinelibrary.wiley.com/doi/10.1002/cplx.v14:3/issuetoc also in readings and links
Giorgio Fagiolo and Andrea Roventini. Macroeconomic Policy in DSGE and Agent-Based Models. Revue de l'OFCE, (5):67–116, 2012 http://www.cairn.info/load_pdf.php?ID_ARTICLE=REOF_124_0067
A Python project to play with complexity: PyCX http://pycx.sourceforge.net (in my computer the folder pycx-0.32 is in Documents, to be used with Python 2.7)
_
As a (controversial) conclusion Mauro Gallegati, Steve Keen, Thomas Lux, Paul Ormerod Physica A 370 (2006) 1–6 Worrying trends in econophysics http://www.sciencedirect.com/science/article/pii/S0378437106004420 (from Unito network)
browsing it
The future about work: a jobless society?
A conference of Pietro Terna in Biella a few weeks ago at http://terna.to.it/materiale/Biella_20170202.pptx (> 100Mb)